.. _WAD Documentation: WAD Documentation ================= .. image:: https://img.shields.io/badge/license-MIT-green :alt: License `WAD `_ is a linear programming method for L1-minimal reconstruction loss in wavelet-ATAC data deconvolution. .. image:: ../WAD_pipeline.png :alt: WAD_pipeline :width: 600px :align: center Usage ----- **Input** - single-cell ATAC reference with defined cell types - bulk tissue samples for deconvolution **Output** - deconvolution_results.tsv **Example Execution** :: WAD \ --scATAC sample1_celltypeA.bw --cell_type celltypeA \ --scATAC sample1_celltypeB.bw --cell_type celltypeB \ --scATAC sample1_celltypeC.bw --cell_type celltypeC \ --scATAC sample2_celltypeA.bw --cell_type celltypeA \ --scATAC sample2_celltypeB.bw --cell_type celltypeB \ --scATAC sample2_celltypeC.bw --cell_type celltypeC \ --bulk_tissue bulk_sample1.bw \ --bulk_tissue bulk_sample2.bw \ --chrom_sizes hg38.chrom.sizes \ --output_dir deconvolution_results **Example Output** :: BulkSample CellTypeA CellTypeB CellTypeC bulk_sample1 40% 50% 10% bulk_sample2 35% 50% 15% Installation ------------ **PyPI / Pip** WAD can be installed from PyPI using pip: :: pip install WAD We recommend installing using a conda environment: :: conda create -n WAD_env conda activate WAD_env conda install pip pip install WAD Requirements ------------ The list of package version requirements is available in ``setup.py``. :: - python == 3.12.7 - numpy >2.0, <2.3 - pandas == 2.3.1 - pyBigWig == 0.3.24 - PyWavelets == 1.7.0 - click == 8.1.7 - scipy == 1.13.1 - cvxpy == 1.6.6 - ortools >=9.10, <9.12 - pyarrow == 20.0.0 License ------- WAD is released under an `MIT license `_. .. toctree:: :maxdepth: 2 :caption: API Reference WAD.wavelet WAD.processing WAD.rocco WAD.io WAD.matrix WAD.linear_programming